TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 3

MATHIAS BRAUN AND WENHAO ZHAO

Homework 3.1 (Construction in the proof of Mittag-Leffler's theorem*). Construct explicitly (in the sense of an explicit series) a holomorphic function $f: \mathbb{C} \setminus \{\sqrt{n} : n \in \mathbb{N}\} \to \mathbb{C}$ such that for every $n \in \mathbb{N}$, the function f has the principal part

$$q_n(z) := \frac{\sqrt{n}}{z - \sqrt{n}}$$

at $z_n := \sqrt{n^1}$.

Homework 3.2 (Partial fraction decomposition of $\pi^2/\sin^2(\pi z)$). The goal of this exercise is to prove the formula

$$\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n \in \mathbf{Z}} \frac{1}{(z-n)^2}.$$

This will be achieved in several steps. Keep in mind the formula

$$\sin(z) = \frac{1}{2i} \left[e^{iz} - e^{-iz} \right].$$

- a. Show the assignment $f(z) := \pi^2/\sin^2(\pi z)$ has its singularities exactly in **Z** and determine the principle parts of the Laurent series expansion in those points.
- b. Show the series

$$g(z) := \sum_{n \in \mathbf{Z}} \frac{1}{(z-n)^2}$$

converges locally uniformly on $\mathbb{C} \setminus \mathbb{Z}$, so that it is meromorphic. Conclude the difference g(z) - f(z) can be extended to an entire function.

- c. Show f(z) converges to zero as $|\Im z| \to \infty$ uniformly in $\Re z$.
- d. Show the same statement for the function g. Then prove that the difference g f is bounded on \mathbb{C} and conclude the proof².

Date: October 7, 2024.

¹Hint. Prove that a second order Taylor polynomial p_n of q_n yields the local normal convergence of the sum $f = \sum_{n \in \mathbb{N}} [q_n - p_n]$, cf. Theorem 2.2.

²Hint. Note that (g - f)(z + 1) = (g - f)(z) for every $z \in \mathbb{C}$.

2 HOMEWORK 3

Homework 3.3 (Weierstraß elliptic function). Let $\omega_1, \omega_2 \in \mathbb{C}$ be **R**-linearly independent. Show that up to an additive constant there exists one and only one holomorphic function³ $\wp: \mathbb{C} \setminus \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\} \to \mathbb{C}$ such that

- a. \wp has principal part $q_1(z):=1/z^2$ in $d_1:=0$ and b. \wp is $\{\omega_1,\omega_2\}$ -periodic, i.e. for every $z\in \mathbf{C}\setminus\{m\omega_1+n\omega_2:\ m,n\in\mathbf{Z}\}$,

$$\wp(z+\omega_1)=\wp(z),$$

$$\wp(z+\omega_2)=\wp(z).$$

You can use without proof that

$$\sum_{\substack{n,m\in\mathbb{Z}\\|n|+|m|\neq 0}}\frac{1}{(n^2+m^2)^{3/2}}<\infty.$$

³If we require that the zeroth order coefficient of the Laurent series in the origin vanishes, this function is called the Weierstraß p-function.